KORUS-AQ Assets

These slides outline the major Korean and US assets available for May – June 2016 Field Campaign focused on the Korean Peninsula and surrounding waters.

Barry Lefer, Jeong-Hoo Park, You Deog Hong

Overview of KORUS-AQ Assets

Aircraft

NASA DC-8 NASA King Air Hanseo Univ. King Air KMA King Air

Ship

KMA R/V Kisang I KIOST R/V Onnuri

Ground

MoE National Network Research Sites (Univ., NIER, KMA) CIMEL/Pandora

Model Forecast Support

Satellite Observations

NASA Contributions to KORUS-AQ: An International Cooperative Air Quality Field Study in Korea

US Steering Group: Jassim Al-Saadi, Gregory Carmichael, James Crawford, Louisa Emmons, and Saewung Kim

Korean Steering Group: Chang-Keun Song, Lim-Seok Chang, Gangwoong Lee, Jhoon Kim, and Rokjin Park

NASA KORUS-AQ Panel Review 13-15 July 2015 (Washington, DC)

Funding will be applied primarily to instrument the DC-8 Aircraft with limited funds for additional ground measurements and modeling support.

DC-8 Priorities for measurements outlined in the whitepaper.

- Priority 1 Mission essential
- Priority 2 Highly desirable
- Priority 3 Useful

DC-8 Trace Gas Priority List

Gas Phase In Situ	Priority	Detection Limit	Resolution
O3	1	1 ppbv	1 s
H2O	1	10 ppmv	1 s
CO	1	5 ppbv	1 s
CH4	1	10 ppbv	1 s
CO2	1	0.1 ppm	1 s
NMHCs	1	<10%	1 min
NO	1	10 pptv	1 s
NO2	1	20 pptv	1 s
НСНО	1	50 pptv	1 s
OH, HO2, RO2	2	0.01/0.1/0.1 pptv	30 s
OH reactivity	2	1 s ⁻¹	10 s
H2O2	2	50 pptv	10 s
ROOH	2	50 pptv	10 s
HNO3	2	50 pptv	10 s
PANs	2	50 pptv	10 s
RONO2	2	50 pptv	10 s
SO2	2	10 pptv	1 s
CH3CN	2	10 pptv	1 min
NOy	3	50 pptv	1 s
Halocarbons	3	variable	1 min
HCN	3	10 pptv	1 min
NH3	3	30 pptv	1 min
N2O	3	1 ppbv	10 s
Organic Acids	3	10 pptv	1 min

DC-8 Aerosol Priority List

Aerosol In Situ	Priority	Detection Limit	Resolution
Size Distribution/Number	1	NA	10 s
Volatility	1	NA	1 s
Scattering	1	1 Mm-1	1 s
Absorption	1	0.2 Mm-1	10 s
Hygroscopicity	1	NA	10 s
Ionic composition	1	50 ng m ⁻³	5 min
Organic composition	1	100 ng m ⁻³	1 min
Black carbon	1	50 ng m ⁻³	1 s
Size-resolved composition	2	100 ng m ⁻³	1 min
Single particle composition	2	<4 µm dia.	5 min
CCN	2	<4 µm dia.	1 s
Cloud particle size dist.	2	0.05-1000 μm	1 s
Radionuclides (²²² Rn, ⁷ Be, ²¹⁰ Pb)	3	1/100/1 fCi m ⁻³	5 min

DC-8 Remote Sensing, Radiation, Meteorology Priority List

Remote Sensing, Radiation, and Met	Priority	Detection Limit	Resolution
UV spectral actinic flux $(4\pi \text{ sr})$	1	80° SZA equivalent	5 s
Ozone lidar (nadir/zenith)	1	5 ppbv or 10%	300 m
Trace Gas Columns (O ₃ , NO ₂ , C ₂ HO)	1	variable	variable
Multi-spectral optical depth	1	0.01	1 s
Aerosol profiles of extinction	1	10 Mm ⁻¹ or 10%	300 m
Aerosol profiles of backscatter	1	3%	30 m
Aerosol profiles of depolarization	1	3%	30 m
High Resolution Met (T, P, winds)	2	0.3K, 0.3 mb, 1 ms ⁻¹	1 s
Hyperspectral solar flux	3	4%	1 s
Broadband flux	3	5%	1 s

Korean Contributions to DC-8 Payload

- SP-2
- CIMS Reactive Nitrogen, CINO2, etc.
- AMS (HIAPER rack)
- CCN
- PTR-MS
- CEAS (HONO, CH2O, NO2)
- NO3 and N2O5 would be more effective from the ship?

Overview of GCAS (GEO-CAPE Airborne Simulator)

Exploded view

Telescopes map vertical slit extent to a 7.5 km cross-track FOV. Images captured at 2 Hz and co-added along track.

Spectral coverage and sampling

- 300-490 nm @0.2 nm/pixel
 - 480-890 nm @0.4 nm/pixel

Slant column product precision for NO₂

- •Minimum retrieved resolution 250 m x 500 m: 1.5e15 molecules cm⁻²
- •Typical retrieved resolution 1 km x 1.5 km: 0.4e14 molecules cm-2

Retrievals for total O3 and HCHO have also been demonstrated

Overview of GeoTASO (TEMPO/GEMS Airborne Simulator)

Geostationary Trace gas and Aerosol Sensor Optimization

- NASA-funded airborne sensor and trace gas/aerosol retrieval project to advance mission readiness of sensor/algorithms for GEO-CAPE/TEMPO missions
 - UV-Vis spectrometer with 2 2-D detector arrays covering 290-390 nm (O₃, SO₂, HCHO) and 415-695 nm (NO₂, O₃, aerosol)
 - Imaging spectrometer covers ~8 km swath with 50 m x 80 m ground patch resolution
 - Spectral passbands of ~ 0.4 nm in UV, ~0.8 nm in Vis with 3x oversampling spectrally
 - Signal to noise of ~ 50 for individual samples
 - Project status
 - Sensor built and demonstrated on HU-25C Falcon aircraft during <u>2 DISCOVER-AQ deployments</u>
 - Retrievals using flight data underway
 - Sensor calibration at GSFC before and after deployments
- DISCOVER-AQ flights
 - 20 flight hours during Sep. 2013 Houston deployment
 - 50 flight hours during July-Aug 2014 Denver deployment
 - Most flights at ~35 kft altitude and overfly DISCOVER-AQ sites
 - Retrievals of atmospheric pollutants from flight data
 - Trace gas retrievals typically use binned up samples at 0.5 to 1 km square cells
 - NO2, SO2, AOD and total O3 retrievals demonstrated
 - CHCO, profile O3, CHOCHO retrieval products in development
 - Ozone retrieval using both UV and Vis absorption bands in development

GeoTASO NO_2 on Falcon (500x500 m²) and GCAS NO_2 on B-200 (250x500 m²)

Caroline Nowlan, SAO

- Close flights in Houston, TX, on 13 September 2013 show very similar NO₂
- Both analyzed with GeoTASO algorithm

GeoTASO NO₂ over Houston (Cloud-free ground pixels)_{Caroline Nowlan, SAO}

GeoTASO NO₂ Slant Column, 02 August 2014 Morning

Co-added to approx. 500m x 450m

Morning vs. Afternoon

From Caroline Nowlan, SAO Preliminary data 12

GeoTASO NO₂ Slant Column, 02 August 2014 Afternoon

Co-added to approx. 500m x 450m

Morning vs. Afternoon

From Caroline Nowlan, SAO Preliminary data 13

TEMPO/GEMS Airborne Simulator Options for KORUS-AQ

- GeoTASO instrument is available
- GCAS instrument is occupied with another field campaign
- GeoTASO can operate from either King Air or Falcon aircraft
- Logistically, King-Air is the preferred aircraft
 - Less complex
 - 70% less expensive
 - Operating envelope can meet KORUS-AQ objectives
- Recommendation: proceed with planning for GeoTASO operation on a NASA King Air aircraft
- UV Calibration for Geo-TASO is an open question...should be possible in time for the KORUS-AQ campaign
- This platform will allow remote sensing measurements to be independent of the DC-8, not affected by changes in altitude that the DC-8 would create.
- Would it help to fly along a satellite track? Need to examine opportunities in terms of overpass, meteorology, and airspace restrictions.

Information for NASA King Air Flight Planning in KORUS-AQ

King Air typical flight characteristics

- 28,000 ft optimum cruise (approximately 8.5 km)
 7 km swath width with GeoTASO/GCAS mapping instruments
- Typical flight speed 100m/s = 6km/min = 60km/10min = 360km/hr
 - 1 flight can cover 800 nautical miles = 1400km
 - For comparison: DC-8 typical flight speed 180m/s
- Up to 4.5 hr flight duration (approximately 4 hr science operations)

For 2-D gapless mapping, assume:

- Lateral track spacing of 5km (9-10 parallel lines per 50km wide box)
- 100km length per 20 min (including turn times)
 - => 3 hr flight can map a 100km x 50km box
- Budgeting for 120 local flight hours => approximately 30 flights
- Can do 2 4-hour flights in the same day

King Air vs Falcon differences

Altitude and influence on swath width

- tan(22.5)=halfwidth/alt; width=2*tan(22.5)*alt = .83*alt
- King Air: 28000ft approx 8.5 km => 7 km swath width
- Falcon: 35000ft approx 10.7 km => 8.9 km swath width

Falcon can fly approx. 50% faster but also burns fuel 3x faster
Falcon total operating cost is 50% larger than King Air
King Air is more reliable, easier access to spares

GeoTASO NO₂ vs PANDORA NO₂ Houston Urban Flights aroline Nowlan, SAO

Cloud-free observations

Small bias, possible causes to be investigated:

- Aerosols not currently included in radiative transfer model for air mass factor calculation
 - Effects from zenith sky observations or background offset removal using clean observations over water

GeoTASO Measurements

- Measures with 2 detector arrays
 - UV: $280 410 \text{ nm} (O_3, HCHO, SO_2)$
 - Visible: 416 690 nm (NO₂, O₃, aerosols)
- 2-D CCD array detector
 - One dimension across flight track and one in wavelength dimension
- Resolution at surface:
 - ~500x500 m² (NO₂, HCHO, O₃)
 - ~1x1 km² (SO₂)
- We retrieve slant columns using nearby zenith-sky reference spectra, then convert to vertical columns with air mass factor from a radiative transfer code (VLIDORT, Spurr et al., 2006) using CMAQ at 4x4 km² resolution

Hanseo Univ. King Air

The actual payload is not yet determined.

If AMS goes on the DC-8, other instruments would go on the King Air.

Ozone - important

PM2.5 (chemical composition) – moved to DC-8

VOCs Speciation – canisters might be possible, but are bulky, other options from U.S. researchers?

NO2 – CAPS – useful for validation, chemistry, emissions, etc.

CO

 SO_2

Meteorology (?)

Small formaldehyde from NASA might be possible

KMA King Air

CCN

Cloud droplet distribution

SP2

OPC

03

NO,NOx,NOy

SO2

CH4

CO

CO₂

N20

H2O, LWC, Total water

Dropsonde

Nephelometer

AIMMS 20 (Winds)

Microwave radiometers (SFMR, GVR)

T, Dew Point, winds

Flight duration up to 6 hours Shorter flight if reaching higher altitudes (20 kft)

Number of flight hours TBD)

KMA R/V Kisang I

```
Ozone
```

PM2.5 (mass and chemical composition) - PILS Aerosol number and size distribution

NO/NOx/NOy

PAN

HONO

C14 content of PM2.5

Viscosity

CO

 SO_2

BVOCs and OH Reactivity (PTRMS)

Aerosol Scattering and Absorption

Meteorology – AWS and radiosonde

Dates and Areas of Operations?

Can MBL structure be measured? Twice a day radiosonde launches provide this.

Can NASA add Pandora and Aeronet instruments? Need to discuss how well those instruments can be stabilized for the ship motions.

KIOST R/V Onnuri

Pandora (NO_2 and O_3 Column) MicroTOPs Insitu Trace Gases (e.g., NO_2 , O_3 , etc) Aerosol Composition Aerosol Size Distribution Aerosol Optical Properties

Areas of Operations?

Research Sites (Univ., NIER, KMA)

Pre-campaign Sites:

Baengnyeong Island

Yonsei University

HUFS

GIST

Anmyeon

Busan University

Other Operational Sites:

LIDAR Network

MoE National Network

CIMEL/Pandora

Initial Deployment to Pre-Campaign sites

Do we need to expand this for KORUS-AQ?

Model Forecast Support

NIER National Air Quality Forecast System

Need for Regional vs. Global Models

Satellite Observations

Near real-time availability for which satellites?

What else?